Dynamic Routing Between
Capsules



Main Idea

e Conv nets are good at translational invariance, but not great at other
invariances (rotation, shadow, etc), room for improvement
e Capsules attempt to capture ‘instantiation parameters’ of features
o Essentially doing ‘inverse graphics’

e Each feature is a vector rather than a scalar
o Magnitude is ‘probability of the feature’
o Direction is ‘parameters of the feature’

e Higher level features can depend on the parameters as well as the probability
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capsule VS. traditional neuron
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Procedure 1 Routing algorithm.

I: procedure ROUTING(@;, 7, [)

2 for all capsule 7 in layer [ and capsule j in layer (I + 1): b;; < 0.

3 for r iterations do

4: for all capsule 7 in layer [: ¢; < softmax(b;) > softmax computes Eq. 3
5 for all capsule j in layer (I + 1): s; < > . cij0);

6 for all capsule j in layer (I + 1): v; < squash(s;) > squash computes Eq. |
;

for all capsule 7 in layer [ and capsule j in layer (I + 1): b;j < bij + 0;|;.v;
return v
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CapsNet Loss Function

calculated for correct DigitCap calculated for incorrect DigitCaps

loss term for
one DigitCap

LJ=|

L2 norm

_)|Z|

max (0, ||[ve|| —m

. zero loss when correct O'i::(”'ig:"t 1 when incorrect zero loss when incorrect
jitCay prediction with probability numerical DigitCap, prediction with probability
n incorre greater than 0.9, non-zero stability U when correct less than 0.1, non-zero
otherwise otherwise

Note: correct DigitCap is one that matches training label, for each training example there will be 1 correct and 9 incorrect DigitCaps

Loss Function Value for Correct and Incorrect DigitCap
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Figure 2: Histogram of distances of votes to the mean of each of the 5 final capsules after each
routing iteration. Each distance point is weighted by its assignment probability. All three images
are selected from the smalINORB test set. The routing procedure correctly routes the votes in the
truck and the human example. The plane example shows a rare failure case of the model where the
plane is confused with a car in the third routing iteration. The histograms are zoomed-in to visualize
only votes with distances less than 0.05. Fig. B.2 shows the complete histograms for the human”
capsule without clipping the x-axis or fixing the scale of the y-axis.



Procedure 1 Routing algorithm' returns activation and pose of the capsules in layer L + 1 given
the activations and votes of capsules in layer L. V;.;, is an H dimensional vote from capsule 7 with
activation a; in layer L to capsule c in layer L 4+ 1. [3,, [3, are learned discriminatively and the
inverse temperature A increases at each iteration with a fixed schedule.
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: procedure EM ROUTING(a, V')

Vi,c: Ric < 1/size(L + 1)
for ¢ iterations do

Ve: Mc:a Sc:, a/c — M'STEP(R:Ca a, ‘/:c:)

Vi: R;. <+ E-STEP(M, S, a’, V;..)
return a’, M

procedure M-STEP(r, a, V')

Vii v « r; * a;
lvl

Vh I.al;h (_ lell,’,;h

. > (Vi) )
Vh: o, ¢ St b
costy, < (By +log(an)) D, Ti
a’ < sigmoid(A(Ba — >, costy))
return p, o, a’

procedure E-STEP(a’, S, M, V")
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return r

> for one higher-level capsule

> for one lower-level capsule




Resources

https://arxiv.org/abs/1710.09829

https://pechyonkin.me/capsules-1/

https://qithub.com/naturomics/CapsNet-Tensorflow/

https://qgithub.com/sekwiatkowski/awesome-capsule-networks

http://helper.ipam.ucla.edu/publications/qss2012/gss2012 10754 .pdf



https://arxiv.org/abs/1710.09829
https://pechyonkin.me/capsules-1/
https://github.com/naturomics/CapsNet-Tensorflow/
https://github.com/sekwiatkowski/awesome-capsule-networks
http://helper.ipam.ucla.edu/publications/gss2012/gss2012_10754.pdf

5Y
T

output
Image

Decoder: Add together intensity-scaled and
translated contributions from each capsule.

I d /‘
earne
template f k
e g Q N ( '
OO0 QOO
Ng: \/ o 1

Train encoder using
backpropagation

\

S

OO




actual ,:_ ’ l target
output| & output

probability that
the capsule’s
visual entity is
present




f)_ output
image

lI

probability
that the :) input
feature is image

present




