Dynamic Routing Between Capsules

Main Idea

- Conv nets are good at translational invariance, but not great at other invariances (rotation, shadow, etc), room for improvement
- Capsules attempt to capture 'instantiation parameters' of features
 - Essentially doing 'inverse graphics'
- Each feature is a vector rather than a scalar
 - Magnitude is 'probability of the feature'
 - Direction is 'parameters of the feature'
- Higher level features can depend on the parameters as well as the probability

Encoder Architecture

For each capsule i, the sum of c_ij is 1

Procedure 1 Routing algorithm.

- 1: procedure ROUTING($\hat{u}_{j|i}, r, l$)
- for all capsule i in layer l and capsule j in layer (l+1): $b_{ij} \leftarrow 0$. 2:
- for r iterations do 3:
- 4: for all capsule *i* in layer *l*: $\mathbf{c}_i \leftarrow \mathtt{softmax}(\mathbf{b}_i)$ \triangleright softmax computes Eq. 3
- for all capsule j in layer (l+1): $\mathbf{s}_i \leftarrow \sum_i c_{ij} \hat{\mathbf{u}}_{j|i}$ 5:
- for all capsule j in layer (l + 1): $\mathbf{v}_i \leftarrow \text{squash}(\mathbf{s}_i)$ 6: \triangleright squash computes Eq. 1 for all capsule i in layer l and capsule j in layer (l+1): $b_{ij} \leftarrow b_{ij} + \hat{\mathbf{u}}_{j|i} \cdot \mathbf{v}_j$ 7:

return \mathbf{v}_i

Encoder

CapsNet Loss Function

Note: correct DigitCap is one that matches training label, for each training example there will be 1 correct and 9 incorrect DigitCaps

Loss Function Value for Correct and Incorrect DigitCap

Decoder

R:(2,7) L:(2,7)	R:(6,0) L:(6,0)	R:(6,8) L:(6,8)	R:(7,1) L:(7,1)	*R:(5,7) L:(5,0)	*R:(2,3) L:(4,3)	R:(2,8) L:(2,8)	R:P:(2,7) L:(2,8)
4	6	š	7	50	3	2	2
4	6	8	7	5	3	2	2
R:(8,7) L:(8,7)	R:(9,4) L:(9,4)	R:(9,5) L:(9,5)	R:(8,4) L:(8,4)	*R:(0,8) L:(1,8)	*R:(1,6) L:(7,6)	R:(4,9) L:(4,9)	R:P:(4,0) L:(4,9)
8	4	Ð	S)	Ş	7	4	4
7	4	9	4	6	6	4	2

Figure 2: Histogram of distances of votes to the mean of each of the 5 final capsules after each routing iteration. Each distance point is weighted by its assignment probability. All three images are selected from the smallNORB test set. The routing procedure correctly routes the votes in the truck and the human example. The plane example shows a rare failure case of the model where the plane is confused with a car in the third routing iteration. The histograms are zoomed-in to visualize only votes with distances less than 0.05. Fig. B.2 shows the complete histograms for the "human" capsule without clipping the x-axis or fixing the scale of the y-axis.

Procedure 1 Routing algorithm¹ returns **activation** and **pose** of the capsules in layer L + 1 given the **activations** and **votes** of capsules in layer L. V_{ich} is an H dimensional vote from capsule i with activation a_i in layer L to capsule c in layer L + 1. β_a , β_v are learned discriminatively and the inverse temperature λ increases at each iteration with a fixed schedule.

1: procedure EM ROUTING(a, V) $\forall i, c: R_{ic} \leftarrow 1/size(L+1)$ 2: for t iterations do 3. $\forall c: M_{c:}, S_{c:}, a'_c \leftarrow \text{M-STEP}(R_{:c}, a, V_{:c:})$ 4: 5: $\forall i: R_{i} \leftarrow \text{E-STEP}(M, S, a', V_{i})$ return a', M1: procedure M-STEP(r, a, V')2: $\forall i: \mathbf{r}'_i \leftarrow \mathbf{r}_i * \mathbf{a}_i$ 3: $\forall h: \boldsymbol{\mu}_h \leftarrow \frac{\sum_i \boldsymbol{r}'_i V'_{ih}}{\sum_i \boldsymbol{r}'_i}$ 4: $\forall h: \boldsymbol{\sigma}_h^2 \leftarrow \frac{\sum_i \boldsymbol{r}'_i (V'_{ih} - \boldsymbol{\mu}_h)^2}{\sum_i \boldsymbol{r}'_i}$ 5: $cost_h \leftarrow (\beta_v + \overline{log}(\sigma_h)) \sum_i r'_i$ 6: $a' \leftarrow sigmoid(\lambda(\beta_a - \sum_h cost_h))$ 7: return μ, σ, a' 1: procedure E-STEP(a', S, M, V'') $\forall c: \boldsymbol{p}_{c} \leftarrow \frac{1}{\sqrt{\prod_{h}^{H} 2\pi \boldsymbol{S}_{ch}^{2}}} e^{-\sum_{h}^{H} \frac{(V_{ch}^{\prime\prime} - \boldsymbol{M}_{ch})^{2}}{2\boldsymbol{S}_{ch}^{2}}}$ 2: $orall c: oldsymbol{r}_c \leftarrow rac{oldsymbol{a}_c' p_c}{\sum_i oldsymbol{a}_i' p_i}$ 3: 4: return r

▷ for one higher-level capsule

 \triangleright for one lower-level capsule

https://arxiv.org/abs/1710.09829

https://pechyonkin.me/capsules-1/

https://github.com/naturomics/CapsNet-Tensorflow/

https://github.com/sekwiatkowski/awesome-capsule-networks

http://helper.ipam.ucla.edu/publications/gss2012/gss2012_10754.pdf

